

1-Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance

By Hutchison, AL (Hutchison, Alan L.) [1] ; Tavaglione, F (Tavaglione, Federica) [2] , [3] , [4] ; Romeo, S (Romeo, Stefano) [4] , [5] , [6] ; Charlton, M (Charlton, Michael) [1] , [7] (provided by Clarivate) Source JOURNAL OF HEPATOLOGY Volume 79 Issue 6 Page 1524-1541 DOI 10.1016/j.jhep.2023.08.030 Published DEC 2023 Early Access NOV 2023 Indexed 2024-01-04 Document Type Review

Abstract

While the association of metabolic dysfunction-associated steatotic liver disease (MASLD) with obesity and insulin resistance is widely appreciated, there are a host of complex interactions between the liver and other endocrine axes. While it can be difficult to definitively distinguish direct causal relationships and those attributable to increased adipocyte mass, there is substantial evidence of the direct and indirect effects of endocrine dysregulation on the severity of MASLD, with strong evidence that low levels of growth hormone, sex hormones, and thyroid hormone promote the development and progression of disease. The impact of steroid hormones, e.g. cortisol and dehydroepiandrosterone, and adipokines is much more divergent. Thoughtful assessment, based on individual risk factors and findings, and management of non-insulin endocrine axes is essential in the evaluation and management of MASLD. Multiple therapeutic options have emerged that leverage various endocrine axes to reduce the fibroinflammatory cascade in MASLD. © 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

Keywords

Author Keywords

[MASLD](#)[endocrine mediators](#)[MASH](#)

Keywords Plus

[HORMONE-BINDING GLOBULIN](#)[INDUCED NONALCOHOLIC STEATOHEPATITIS](#)[POLYCYSTIC OVARY-SYNDROME](#)[EARLY BREAST-CANCER](#)[FATTY LIVER](#)[HEPATIC STEATOSIS](#)[GROWTH-HORMONE](#)[POSTMENOPAUSAL WOMEN](#)[TESTOSTERONE REPLACEMENT](#)[AROMATASE INHIBITORS](#)

2-Association of Insulin Resistance With Cardiovascular Disease and All-Cause Mortality in Type 1 Diabetes: Systematic Review and Meta-analysis

By Sun, R (Sun, Rui) [1] ; Wang, JX (Wang, Jianxin) [2] , [3] ; Li, M (Li, Meng) [1] , [4] , [5] ; Li, JE (Li, Jingen) [1] ; Pan, Y (Pan, Yi) [1] ; Liu, BR (Liu, Birong) [1] ; Lip, GYH (Lip, Gregory Y. H.) [4] , [5] , [6] ; Zhang, LJ (Zhang, Lijing) [1] (provided by Clarivate) Source DIABETES CARE

Volume 47 Issue 12 DOI 10.2337/dc24-0475 Published DEC 2024 Indexed 2025-01-05 Document Type Review

Abstract

OBJECTIVE The association of insulin resistance (IR) with cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes (T1D) remains unclear. **PURPOSE** To investigate whether IR is associated with CVD and all-cause mortality among individuals with T1D. **DATA SOURCES** PubMed, Embase, and the Cochrane Library databases were searched from inception to 31 October 2023. **STUDY SELECTION** Observational studies reporting the associations between IR, as calculated by the estimated glucose disposal rate (eGDR), and the risk of CVD and all-cause mortality in individuals with T1D were eligible for inclusion. **DATA EXTRACTION** Data from eight selected studies were extracted, pooled by random-effects models, and results are presented as hazard ratios (95% CIs). **DATA SYNTHESIS** Eight studies involving 21,930 individuals were included, of which five studies involving 19,960 individuals with T1D reported the risk of CVD. During a median follow-up of 10 years, there were 2,149 cases of incident CVD. The pooled hazard ratio for composite CVD outcome per 1-unit increase in the eGDR index was 0.83 (95% CI 0.78-0.90, $I^2 = 58.9\%$). Five studies involving 19,403 individuals reported the risk of all-cause mortality. During a median follow-up of 10 years, 1,279 deaths were observed. The pooled hazard ratio for all-cause mortality per 1-unit increase in the eGDR index was 0.84 (95% CI 0.81-0.87, $I^2 = 0\%$). **LIMITATIONS** The small number of available studies restricted our ability to perform meta-regression analyses or more detailed subgroup analyses. **CONCLUSIONS** IR, as calculated by the eGDR, may be an additional risk factor for CVD and all-cause mortality in T1D.

Keywords

Keywords Plus

GLUCOSE DISPOSAL RATE METABOLIC SYNDROME HEART-Failure RISK COMPLICATIONS ADOLESCENTS CHILDREN OBESITY EVENTS

3- Insulin resistance assessed by estimated glucose disposal rate and risk of incident cardiovascular diseases among individuals without diabetes: findings from a nationwide, population based, prospective cohort study

By Zhang, ZL (Zhang, Zenglei) [1] ; Zhao, L (Zhao, Lin) [1] ; Lu, YT (Lu, Yiting) [1] ; Xiao, Y (Xiao, Yan) [1] ; Zhou, XL (Zhou, Xianliang) [1] (provided by Clarivate) Source CARDIOVASCULAR DIABETOLOGY Volume 23 Issue 1 DOI 10.1186/s12933-024-02256-5 Article Number 194 Published JUN 6 2024 Indexed 2024-06-21 Document Type Article

Abstract

Background Recent studies have suggested that insulin resistance (IR) contributes to the development of cardiovascular diseases (CVD), and the estimated glucose disposal rate (eGDR) is considered to be a reliable surrogate marker of IR. However, most existing evidence stems from studies involving diabetic patients, potentially overstating the effects of eGDR on CVD. Therefore, the primary objective of this study is to examine the relationship of eGDR with incidence of CVD in non-diabetic participants. **Method** The current analysis included individuals from the China Health and Retirement Longitudinal Study (CHARLS) who were free of CVD and diabetes mellitus but had complete data on eGDR at baseline. The formula for calculating eGDR was as follows: $eGDR \text{ (mg/kg/min)} = 21.158 - (0.09 \times WC) - (3.407 \times \text{hypertension}) - (0.551 \times \text{HbA1c})$ [WC (cm), hypertension (yes = 1/no = 0), and HbA1c (%)]. The individuals were categorized into four subgroups according to the quartiles (Q) of eGDR. Crude incidence rate and hazard ratios (HRs) with 95% confidence intervals (CIs) were computed to investigate the association between eGDR and incident CVD, with the lowest quartile of eGDR (indicating the highest grade of insulin resistance) serving as the reference. Additionally, the multivariate adjusted restricted cubic spine (RCS) was employed to examine the dose-response relationship. **Results** We included 5512 participants in this study, with a mean age of 58.2 +/- 8.8 years, and 54.1% were female. Over a median follow-up duration of 79.4 months, 1213 incident CVD cases, including 927 heart disease and 391 stroke, were recorded. The RCS curves demonstrated a significant and linear relationship between eGDR and all outcomes (all P for non-linearity > 0.05). After multivariate adjustment, the lower eGDR levels were founded to be significantly associated with a higher risk of CVD. Compared with participants with Q1 of eGDR, the HRs (95% CIs) for those with Q2 - 4 were 0.88 (0.76 - 1.02), 0.69 (0.58 - 0.82), and 0.66 (0.56 - 0.79). When assessed as a continuous variable, per 1.0-SD increase in eGDR was associated a 17% (HR: 0.83, 95% CI: 0.78 - 0.89) lower risk of CVD, with the subgroup analyses indicating that smoking status modified the association (P for interaction = 0.012). Moreover, the mediation analysis revealed that obesity partly mediated the association. Additionally, incorporating eGDR into the basic model considerably improve the predictive ability for CVD. **Conclusion** A lower level of eGDR was found to be associated with increased risk of incident CVD among non-diabetic participants. This suggests that eGDR may serve as a promising and preferable predictor and intervention target for CVD.

Keywords

Author Keywords

Insulin Resistance

[Insulin resistance](#)[Cardiovascular diseases](#)[Estimated glucose disposal rate](#)[Non-diabetes](#)[Predictive performance](#)

Keywords Plus

[ALL-CAUSE MORTALITY](#)[GLOBAL BURDEN](#)[HYPERGLYCEMIA](#)[ASSOCIATION](#)[TOLERANCE](#)